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ROBUSTNESS ANALYSIS OF HOTTOPIXX, A LINEAR
PROGRAMMING MODEL FOR FACTORING

NONNEGATIVE MATRICES∗
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Abstract. Although nonnegative matrix factorization (NMF) is NP-hard in general, it has been
shown very recently that it is tractable under the assumption that the input nonnegative data matrix
is close to being separable. (Separability requires that all columns of the input matrix belong to the
cone spanned by a small subset of these columns.) Since then, several algorithms have been designed
to handle this subclass of NMF problems. In particular, Bittorf et al. [Adv. Neural Inform. Process.
Syst., 25 (2012), pp. 1223–1231] proposed a linear programming model, referred to as Hottopixx. In
this paper, we provide a new and more general robustness analysis of their method. In particular,
we design a provably more robust variant using a postprocessing strategy which allows us to deal
with duplicates and near duplicates in the data set.
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1. Introduction. Nonnegative matrix factorization (NMF) is a popular machine
learning technique and allows one to express a set of nonnegative vectors as nonneg-
ative linear combinations of nonnegative basis elements [9]. More formally, given a
nonnegative matrix M ∈ R

m×n
+ corresponding to n vectors in an m-dimensional space

and a factorization rank r, the aim is to find a basis matrix U ∈ R
m×r
+ and a weight

matrix V ∈ R
r×n
+ such that the norm of the error M − UV is minimized. Although

NMF is NP-hard [10], Arora et al. [1] recently showed that it can be solved in polyno-
mial time given that the matrix M is close to being separable. A nonnegative matrix
M ∈ R

m×n
+ is r-separable if and only if it can be expressed as M = WH , where

W ∈ R
m×r
+ , H ∈ R

r×n
+ , and each column of W is equal to a column of M . In other

terms, M ∈ R
m×n
+ is r-separable if and only if

M = W [Ir , H
′]Π = [W,WH ′]Π

for some H ′ ∈ R
r×n
+ and some permutation matrix Π ∈ {0, 1}n×n. Any nonnegative

matrix is n-separable because of the trivial decomposition M = MIn with r = n,
and the aim is to find a decomposition where r is as small as possible. It is rather
straightforward to check that the smallest such r is the number of extreme rays of
the cone generated by the columns of M , that is, cone(M) = {Mx | x ∈ R

n
+}.

Equivalently, if the entries of columns of matrix M are normalized to sum to one1,
the smallest such r is the number of vertices of the convex hull of the columns of
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M , that is, conv(M) = {Mx | x ∈ R
n
+,
∑n

i=1 xi = 1}; see [8] and the references
therein for more details about the geometric interpretation of the separable NMF
problem.

It turns out that the separability assumption makes sense in several practical
situations. For example, in document classification, each column of M corresponds to
a document (that is, a vector of word counts) and is approximated with a nonnegative
linear combination of the columns of matrix W which correspond to different topics
(that is, bags of words). Separability of M requires that for each topic, there exists
at least one document discussing only that topic. In practice, this condition is not
often satisfied and it is more reasonable to assume separability of MT (that is, each
row of H is equal to a row of M) which requires that for each topic, there exists at
least one word used only by that topic; see the discussions in [1, 2]. The separability
assumption is also widely used in hyperspectral imaging and is referred to as the
pure-pixel assumption; see [7] and the references therein.

In practice, the input separable matrix M is perturbed with some noise and it
is therefore desirable to design robust algorithms; see [1, 2, 3, 4, 5, 7, 8]. In fact, in
the noiseless case, the problem is rather easy and reduces to identifying the vertices
of the convex hull of a set of points. In this paper, we will focus on the algorithm of
Bittorf et al. [3], referred to as Hottopixx, which is described in the next section. As
we will see, the robustness analysis provided by the authors is rather restrictive as it
does not deal with duplicates nor near duplicates of the columns of W in the data
set: the aim of this paper is to develop a more general analysis of their algorithm and
design a provably more robust variant applicable to any noisy separable matrix (that
is, allowing duplicates and near duplicates in the data).

1.1. Hottopixx: A linear programming model for separable NMF. From
now on, we will always assume that the columns of the input data matrix M have
been normalized in order to sum to one, that is,

(i) the zero columns of M have been discarded and

(ii) each column of M is updated using M(:, j)← M(:,j)
||M(:,j)||1 .

We will also always assume that we are given a noisy separable matrix M̃ = M +N ,
where N ∈ R

m×n is some noise added to the separable matrix M such that

||N ||1 = max
||x||1≤1

||Nx||1 = max
j
||N(:, j)||1 ≤ ε for some ε ≥ 0.

The matrix M is r-separable if and only if

M = WH = W [Ir, H
′]Π = [W,WH ′]Π(1.1)

= [W,WH ′]Π Π−1

(
Ir H ′

0(n−r)×r 0(n−r)×(n−r)

)
Π︸ ︷︷ ︸

X0∈R
n×n
+

= MX0

for some W ≥ 0, H ′ ≥ 0 and some permutation matrix Π. Equation (1.1) shows that
M is r-separable if and only if there exists a nonnegative matrix X0 ∈ R

n×n
+ such that

(1) X0 contains (n − r) all-zero rows and the r-by-r identity matrix as a submatrix
(up to permutation) and (2) M = MX0. Notice that because the columns of matrix
M and W sum to one, the columns of the matrix H ′ have sum to one as well. Based
on these observations, Bittorf et al. [3] proposed to solve the following optimization
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problem2 in order to identify approximately the columns of the matrix W among the
columns of the matrix M̃ :

min
X∈R

n×n
+

pT diag(X) such that

||M̃ − M̃X ||1 ≤ 2ε,(1.2a)

tr(X) = r,(1.2b)

X(i, i) ≤ 1 for all i,(1.2c)

X(i, j) ≤ X(i, i) for all i, j,(1.2d)

where p ∈ R
n is any vector with distinct entries. Intuitively, the model reads as

follows: we have to assign a weight in [0,1] (1.2c) to each column of M (that is, give
a value to X(i, i) for all i) for a total weight of r (1.2b). Moreover, we cannot use a
column to reconstruct another column with a weight larger than the corresponding
diagonal entry of X (1.2d), while we have to guarantee that the approximation error
is small (1.2a). It is interesting to notice that the problem is always feasible: in fact,
X0 from (1.1) is a feasible solution of (1.2) since the columns of H ′ sum to one and

||M̃ − M̃X0||1 = ||(M +N)− (M +N)X0||1
≤ ||M −MX0||1 + ||N ||1 + ||N ||1||X0||1 ≤ 2ε.

Finally, Bittorf et al. [3] identify approximately the columns of W by selecting the r
columns of M̃ whose corresponding diagonal entries of an optimal solution of (1.2) are
the largest; see Algorithm 1, referred to as Hottopixx. Note that the corresponding
optimal weight matrix H can be obtained by solving another linear program; see
Algorithm 2.

Algorithm 1. Hottopixx. Extracting columns of a separable matrix by linear
programming [3].

Input: A noisy r-separable matrix M̃ = WH+N , the noise level ||N ||1 ≤ ε, and the
number r of columns of W .

Output: A matrix W̃ such that ||W̃ (:, P )−W ||1 is small for some permutation P .
1: Find the optimal solution X∗ of (1.2).
2: Let K be the index set corresponding to the r largest diagonal entries of X∗.
3: Set W̃ = M̃(:,K).

Algorithm 2. Near-separable NMF using Hottopixx and linear programming [3].

Input: A noisy r-separable matrix M̃ = WH+N , the noise level ||N ||1 ≤ ε, and the
number r of columns of W .

Output: An nonnegative factorization (W̃ , H̃) such that ||M̃ − W̃ H̃ ||1 is small.

1: Compute W̃ using Algorithm 1.
2: Solve H̃ = argminY ≥0 ||M̃ − W̃Y ||1.

2In [3], the model assumes separability of MT so that (1.2) is equivalent to the model in [3]
applied to MT . We prefer here to work with the columns.
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Before stating robustness results, it is important to define the conditioning of ma-
trixW , which is a crucial characteristic of separable NMF problems. In fact, the better
the columns of W are spread in the unit simplex Δm = {x ∈ R

m | x ≥ 0,
∑m

i=1 = 1},
the more noise tolerant the data will be. In [1, 3], this conditioning is measured via
the parameter

α = min
1≤k≤r,x∈Δr−1

||W (:, k)−W (:,R)x||1, where R = {1, 2, . . . , r}\{k},

and the matrix W is said to be α-robustly simplicial. (Notice that α ≤ 2 for any
nonnegative matrix W whose columns sum to one.) In other words, α is the minimum
among the �1-distances between a column of W and the convex hull of the other
columns of W . It is necessary that ||N ||1 ≤ ε < α

2 for any separable NMF algorithm

to be able to approximately recover the columns of W from the matrix M̃ = WH+N .
In fact, if ε ≥ α

2 , any r-separable matrix M with r ≥ 2 can be perturbed so that one

of the columns of the perturbed matrix M̃ corresponding to a column of W belongs
to the convex hull of the other columns. In other words, we can perturb the matrix
M so that it becomes (r− 1)-separable and we could therefore not distinguish one of
the columns of W from the columns of M . For example, with

W =

(
α
2 Ir

(1− α
2 )e

T

)
, H = Ir, and N =

( −α
2 Ir

0

)
, we have M̃ =

(
0r×r

(1− α
2 )e

T

)
,

so that the matrix M = WH is r-separable with W α-robustly simplicial and ||N ||1 =
α
2 , while M̃ is 1-separable.

In order to prove robustness results for Algorithm 2, Bittorf et al. [3] used the
following observation.

Lemma 1.1. Suppose M is normalized and admits a rank-r separable factorization
WH, and suppose M̃ = M+N with ||N ||1 ≤ ε. If W̃ is such that ||W̃ (:, P )−W ||1 ≤ δ
for some δ ≥ 0 and some permutation P ; then Algorithm 2 constructs a factorization
(W̃ , H̃) satisfying ||M̃ − W̃ H̃ ||1 ≤ ε+ δ.

Proof. Denoting NW = W̃ (:, P )−W , we have

||M̃ − W̃ H̃||1 = argminY ≥0 ||M +N − (W +NW )Y ||1
≤ ||M +N − (W +NW )H ||1
≤ ||N ||1 + ||NWH ||1 + ||M −WH ||1
≤ ε+ δ

since the columns of H sum to one.
Lemma 1.1 allows us to focus on proving robustness results for Algorithm 1. In

fact, any result that applies to Algorithm 1 directly applies to Algorithm 2. In this
paper, we will therefore focus our attention on Algorithm 1, as was implicitly done
in [3].

We can now state the robustness result for Hottopixx proposed in [3].
Theorem 1.2 ([3, Thm. 3.2]). Suppose M̃ = M + N , where M is normalized

and admits a rank-r separable factorization WH with W α-robustly simplicial and
||N ||1 ≤ ε. Suppose that the there is no duplicate of the columns of W and that for
all columns with index j such that M(:, j) �= W (:, k) for all k, we have a margin

constraint ||M(:, j) −W (:, k)||1 ≥ d0 for all k. Suppose also that ε < min(αd0,α
2)

9(r+1) .
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Then Algorithm 1 identifies correctly the columns of W , that is, it extracts a matrix
W̃ satisfying ||W̃ (:, P )−W ||1 ≤ ε for some permutation P .

Note that the above robustness result only deals with input data matrices without
duplicates or near duplicates of the columns of W (because of the margin constraint).
In other terms, the columns of W must be isolated for the robustness result to apply.
This is a very unnatural condition. For example, in document data sets, separability
requires that for each topic there exists at least one word used only by that topic; see
the introduction. In this context, the additional margin condition requires that for
each topic there exists one and only one word associated with that topic, which is
rather impractical. In this paper, we propose a postprocessing strategy for Hottopixx
so that duplicates and near duplicates are allowed in the data set.

1.2. Conditioning and κ-robustly conical matrices. Because the columns
of the variable X in (1.2) are not required to sum to one, it turns out that it will be
easier to work with the following parameter measuring the conditioning of matrix W :

κ = min
1≤k≤r

min
x∈R

r−1
+

||W (:, k)−W (:,R)x||1, where R = {1, 2, . . . , r}\{k},

and the matrix W is said to be κ-robustly conical. We have that κ is the minimum
among the �1-distances between a column of W and the convex cone generated by the
other columns of W . If the columns of W sum to one (which will always be assumed),
κ ≤ 1 and we can relate α and κ as follows.

Theorem 1.3. For any α-robustly simplicial and κ-robustly conical nonnegative
matrix W whose columns sum to one, we have

κ ≤ α ≤ 2κ.

Proof. The first inequality follows directly from the definition. The second is
proved in Appendix A.

Therefore, it is essentially equivalent to working with α or κ as they differ by a
multiplicative factor of at most 2.

1.3. Contribution and outline of the paper. In this paper, we provide a
new analysis of Hottopixx (Algorithm 1). This in turn allows us to design a post-
processing strategy leading to a provably more robust variant (Algorithm 3) which is
applicable to any separable matrix (that is, duplicates and near duplicates are allowed
in the data set as opposed to the original robustness result from [3]).

In the first part of the paper (section 2), we analyze the case where no duplicates
or near duplicates are allowed in the data set and focus on the following proposition.

Proposition 1. Suppose M̃ = M +N , where M is normalized, admits a rank-r
separable factorization WH, where W is κ-robustly simplicial with κ > 0, and has the
form (1.1) with maxi,j H

′
ij ≤ β ≤ 1. Suppose also that ||N ||1 ≤ ε and ε is sufficiently

small. Then Algorithm 1 extracts a matrix W̃ satisfying ||W − W̃ (:, P )||1 ≤ ε for
some permutation P .

Note that the condition on the entries of H ′ is implied by the margin constraint
of Theorem 1.2 since

||M(:, j)−W (:, k)||1 ≥ d0 for all 1 ≤ k ≤ r ⇒ max
i

H(i, j) ≤ β = 1− d0
2
;

see Lemma 3.2. Hence, by Theorem 1.2, Proposition 1 holds for ε < min(2α(1−β),α2)
9(r+1) .

In section 2, we prove that
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• ε ≤ κ(1−β)
9(r+1) is sufficient for Proposition 1 to hold (Theorem 2.3), while

• ε < κ(1−β)
(1−β)(r−1)+1 is necessary for Proposition 1 to hold for any r ≥ 3 and

β < 1 (Theorem 2.4).
Hence, our analysis gets rid of the term α2 from Theorem 1.2 and is close to being
tight.

In the second part of the paper (section 3), we do not make any assumption on
the input separable matrix and focus on the following proposition.

Proposition 2. Suppose M̃ = M+N where M is normalized and admits a rank-
r separable factorization WH, where W is κ-robustly simplicial with κ > 0. Suppose
also that ||N ||1 ≤ ε and ε is sufficiently small. Then Algorithm 1 extracts a matrix
W̃ satisfying ||W − W̃ (:, P )||1 ≤ δ for some permutation P and some δ ≥ 0.

We first show that it is necessary for Proposition 2 to hold that ε < κ
r−1 (Corol-

lary 2.5) and that δ ≥ 3 ε
α + 3

2ε for any ε < α
2 (Theorem 3.1). (We also show that this

lower bound on δ applies to a broader class of separable NMF algorithms.) Then, we
propose a postprocessing of the solution of the linear program (1.2) (see Algorithm 3)
for which the following result holds.

Theorem 3.5 (see section 3.2). Let M = WH be a normalized r-separable
matrix where W is κ-robustly conical with κ > 0. Let also M̃ = M + N with
||N ||1 ≤ ε. If

ε <
ωκ

99(r + 1)
,

where ω = mini�=j ||W (:, i)−W (:, j)||1 (note that ω ≥ κ), then Algorithm 3 extracts

a matrix W̃ such that

||W − W̃ (:, P )||1 ≤ 49(r + 1)
ε

κ
+ 2ε for some permutation P .

Because the necessary condition ε < κ
r−1 also applies to Algorithm 3, the bound for ε

of Theorem 3.5 is tight up to a factor ω (and some constant multiplicative factor).
Moreover, because of the necessary condition on δ (see above), Theorem 3.5 is tight
up to a factor r (and some constant multiplicative factor). Finally, we show that it is
necessary for Proposition 2 to hold that ε ≤ κ

(r−1)2 for any δ < κ+ ε (Theorem 3.6),

which demonstrates that Hottopixx cannot achieve a better bound than Algorithm 3.
We also compare Algorithm 3 with the algorithm of Arora et al. [1] in section 3.4.

In the last part of the paper (section 4), we illustrate our results on some synthetic
data sets: we show that the postprocessing makes Hottopixx more robust to noise and
able to deal with duplicates and near duplicates of the columns of W .

1.4. Notation. The set ofm-by-n real matrices is denoted R
m×n; forA ∈ R

m×n,
we denote the jth column of A by A(:, j), the ith row of A by A(i, :), and the entry
at position (i, j) by A(i, j); for b ∈ R

m×1 = R
m, we denote the ith entry of b by

b(i). Notation A(I,J ) refers to the submatrix of A with row and column indices
respectively in I and J . The matrix AT is the transpose of A. The �1-norm ||.||1 of a
vector is defined as ||b||1 =

∑
i |b(i)| and of a matrix as ||A||1 = maxj ||A(:, j)||1. The

�∞-norm ||.||∞ of a vector is defined as ||b||∞ = maxi |b(i)|. We will denote by En

the n-by-n matrix of all-ones, 0m×n the m-by-n the matrix of all-zeros, and In the
n-by-n identity matrix. We will also denote ei the ith column of the identity matrix,
e the all-one vector, and 0 the all-zero vector; their dimensions will be clear from the
context. The vector of the diagonal entries of a matrix A is denoted diag(A), while
its trace is denoted tr(A) = eT diag(A). For a set K, |K| denotes its cardinality.
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2. Analysis without duplicates or near duplicates. In this section, we

focus on Proposition 1: we show that ε ≤ κ(1−β)
9(r+1) is sufficient for Proposition 1 to

hold (Theorem 2.3), while ε < κ(1−β)
(r+1)(1−β)+1 is necessary for any r ≥ 3 and β < 1

(Theorem 2.4).
Lemma 2.1. Suppose M̃ = M +N , where M is normalized and ||N ||1 ≤ ε < 1,

and suppose X is a feasible solution of (1.2). Then, for all 1 ≤ j ≤ n,

||X(:, j)||1 ≤ 1 +
4ε

1− ε
and ||M(:, j)−MX(:, j)||1 ≤ 4ε

1− ε
.

Proof. For all 1 ≤ j ≤ n,

1− ε ≤ ||M(:, j)||1 − ||N(:, j)||1 ≤ ||M(:, j) +N(:, j)||1 = ||M̃(:, j)||1,
from which we obtain

2ε ≥ ||M̃(:, j)− M̃X(:, j)||1 ≥ ||M̃X(:, j)||1 − ||M̃(:, j)||1
≥ ||MX(:, j)||1 − ||NX(:, j)||1 − (1 + ε)

≥ ||X(:, j)||1 − ε||X(:, j)||1 − 1− ε,

since the columns of M sum to one and M and X are nonnegative. This implies that

||X(:, j)||1 ≤ 1+3ε
1−ε = 1 + 4ε

1−ε , and ||NX(:, j)||1 ≤ ||N ||1||X(:, j)||1 ≤ ε
(

1+3ε
1−ε

)
. We

then have

2ε ≥ ||M̃(:, j)− M̃X(:, j)||1 = ||M(:, j) +N(:, j)− (M +N)X(:, j)||1
≥ ||M(:, j)−MX(:, j)||1 − ε− ε

(
1 + 3ε

1− ε

)
,

hence ||M(:, j)−MX(:, j)||1 ≤ 3ε+ ε
(

1+3ε
1−ε

)
= 4ε

1−ε .

Remark 1. Note that a sum-to-one constraint on the columns of X could be added
to the model (1.2) while keeping linearity and would make the analysis simpler. In
fact, we would directly have ||X(:, j)||1 = 1 and ||M(:, j)−MX(:, j)||1 ≤ 4ε for all j,
and the error bounds from Theorems 2.3 and 3.5 could be slightly improved. However,
in this paper we stick with the original formulation proposed in [3].

Lemma 2.2. Let M̃ = M +N , where M is normalized, admits a rank-r separable
factorization WH, where W is κ-robustly conical with κ > 0, and ||N ||1 ≤ ε < 1, and
has the form (1.1) with maxi,j H

′
ij ≤ β < 1. Also let X be any feasible solution of

(1.2). Then

X(j, j) ≥ 1− 8ε

κ(1− β)(1 − ε)

for all j such that M(:, j) = W (:, k) for some 1 ≤ k ≤ r.
Proof. Let K be the set of r indices such that M(:,K) = W . Let also 1 ≤ k ≤ r

and denote j = K(k) so that M(:, j) = W (:, k). By Lemma 2.1,

(2.1) ||W (:, k)−WHX(:, j)||1 ≤ 4ε

1− ε
.

Since H(k, j) = 1,

WHX(:, j) = W (:, k)H(k, :)X(:, j) +W (:,R)H(R, :)X(:, j)

= W (:, k)
(
X(j, j) +H(k,J )X(J , j)

)
+W (:,R)y,
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where R = {1, 2, . . . , r}\{k}, J = {1, 2, . . . , n}\{j}, and y = H(R, :)X(:, j) ≥ 0. We
have

(2.2) η = X(j, j) +H(k,J )X(J , j) ≤ X(j, j) + β

(
1 +

4ε

1− ε
−X(j, j)

)
,

since ||H(k,J )||∞ ≤ β and ||X(:, j)||1 ≤ 1 + 4ε
1−ε (Lemma 2.1). Hence

(2.3) ||W (:, k)−WHX(:, j)||1 ≥ (1− η)

∥∥∥∥W (:, k)−W (:,R) y

1 − η

∥∥∥∥
1

≥ (1 − η)κ.

Combining (2.1), (2.2), and (2.3), we obtain

1−
(
X(j, j) + β

(
1 +

4ε

1− ε
−X(j, j)

))
≤ 4ε

κ(1− ε)
,

which gives, using the fact that κ, β ≤ 1,

X(j, j) ≥ 1− 8ε

κ(1− β)(1 − ε)
.

Theorem 2.3. It is sufficient for Proposition 1 to hold that

ε ≤ κ(1− β)

9(r + 1)
.

Proof. If ε = 0, the proof is given in [3, Thm. 3.1]: for each 1 ≤ k ≤ r, there exists
a unique j ∈ {1, 2, . . . , n} such that M(:, j) = W (:, k) and X(j, j) = 1. (This follows
easily from the fact that the entries of p are distinct.) (Note that in the noiseless case
when ε = 0, duplicates and near duplicates are allowed in the data set since β can
be equal to one.) Otherwise ε > 0 and β < 1. Let X be a feasible solution of (1.2)
(which always exists since the feasible set of (1.2) is nonempty). If we prove that the
r diagonal entries of X corresponding to the columns of W are larger than all the
other ones (because β < 1, there are no duplicates of the columns of W in the data
set), then we are done. In fact, these columns will then be identified by Algorithm 2
and we will have ||W − W̃ (:, P )||1 ≤ ε for some permutation P . (Notice that we do
not need an optimal solution: any feasible solution identifies the columns of W .)

Let K be the set of r indices such that M(:,K) = W . Assume that

(2.4) X(k, k) >
r

r + 1
for all k ∈ K.

Since tr(X) = r and X ≥ 0, we have∑
j /∈K

X(j, j) = r −
∑
k∈K

X(k, k) < r − r
r

r + 1
=

r

r + 1
< X(k, k) for all k ∈ K,

implying thatX(j, j) < X(k, k) for all k ∈ K, j /∈ K, which gives the result. It remains
to show that (2.4) holds. By Lemma 2.2,

X(k, k) ≥ 1− 8ε

κ(1− β)(1 − ε)
> 1− 9ε

κ(1 − β)
,
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since 8
1−ε < 9 for any ε ≤ κ(1−β)

9(r+1) ≤ 1
18 as κ > 0, β < 1 and r ≥ 1. Finally, for

ε ≤ (1−β)κ
9(r+1) , X(i, i) > r

r+1 and the proof is complete.

Remark 2. The proof of Theorem 2.3 actually does not make use of the constraints
X(i, j) ≤ X(i, i) for all i, j. The reason is that the assumption maxi,j H

′
ij ≤ β < 1

implies that there is no duplicate of the columns of W in the data set (if β = 1, ε = 0
and Algorithm 2 is guaranteed to work [3, Thm. 3.1]). This implies that for being able
to reconstruct sufficiently well each column of W , the corresponding diagonal entry
of X must be large independently of the other entries of the corresponding column
of X .

Therefore, in case there is no duplicate in the data set (or some some preprocess-
ing has been used to remove them), these constraints can be discarded. (A similar
observation was made in [3].) Moreover, since Theorem 2.3 only requires feasibility
in that case, any feasible solution of the corresponding relaxed linear program will
correctly identify the columns of W .

Theorem 2.4. For Proposition 1 to hold when r ≥ 3 and β < 1, it is necessary
that

(2.5) ε <
κ(1− β)

(r − 1)(1− β) + 1
.

Proof. See Appendix B.
Theorem 2.4 shows that the sufficient condition derived in Theorem 2.3 is close

to being tight. In particular, if r is assumed to be bounded above, then it is tight up
to some constant multiplicative factor. (In practice r is often assumed to be small.)
We believe it is possible to improve the bound of Theorem 2.3 to match the one of
Theorem 2.4 (up to some constant multiplicative factor). Unfortunately, we were not
able to derive such a sufficient condition; this is a topic for further research.

Remark 3 (cases r = 1, 2). Theorem 2.4 does not apply when r = 1, 2 because of
the following:

• The rank-one separable NMF problem is trivial. In fact, if M admits a rank-
one separable factorization whT and M̃ = M + N with ||N ||1 ≤ ε, then
||M̃(:, j)− w||1 ≤ ε for all j.
• The rank-two case is particular because it is not possible to construct very
bad instances. In fact, all rank-two separable NMF problems are essentially
equivalent to each other because the columns of M belong to the line segment
[W (:, 1),W (:, 2)].

To conclude this section, we provide a necessary condition for Proposition 2.
Corollary 2.5. For Proposition 2 to hold for any δ < κ

2 and r ≥ 3, it is
necessary that

ε <
κ

r − 1
.

Proof. In fact,

ε <
κ(1− β)

(1 − β)(r − 1) + 1
≤ κ(1− β)

(1 − β)(r − 1)
=

κ

r − 1
,

while the matrix M̃ = WH + N constructed in the proof of Theorem 2.4 satisfies
||W − W̃ (:, P )||1 ≥ r−2

r−1κ ≥ κ
2 , where W̃ is the matrix extracted by Algorithm 1 and

P is any permutation.
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3. Dealing with duplicates and near duplicates using postprocessing.
In this section, we investigate Proposition 2 and propose a variant of Hottopixx (see
Algorithm 3) which is provably robust for any noisy separable matrix. In section 3.1,
we present a simple necessary condition for Proposition 2 to hold. In section 3.2,
we show that for each column of W , there is a subset of the columns of M̃ close to
that column of W such that the sum of the corresponding diagonal entries of any
feasible solution X of (1.2) is larger than r

r+1 . Therefore, using an appropriate post-
processing of the solution X of (1.2) (see Algorithm 3), we can approximately recover
the columns of W , given that the noise level ε is smaller than some upper bound. In
section 3.3, we show that Hottopixx (Algorithm 1) cannot achieve this bound which
proves that Algorithm 3 is more robust. Finally, we compare Algorithm 1 with the
algorithm of Arora et al. [1] in section 3.4.

3.1. Preliminary necessary conditions. Recall that the aim is to identify,
among the columns of M̃ , r columns gathered in the matrix W̃ in such a way that
||W − W̃ (:, P )||1 ≤ δ for some permutation P and some δ ≥ 0. Since ||W ||1 = 1,
we will assume that δ < 1; otherwise the separable NMF problem is trivial since the
solution W̃ = 0 gives the result. It actually makes sense to impose δ < κ ≤ α ≤ 1:
this guarantees a solution W̃ to have distinct columns since two columns of W can
potentially be at distance κ; for example, with

W =

⎛
⎝ κ

2 0
0 κ

2
1− κ

2 1− κ
2

⎞
⎠ ,

extracting twice the first column would give the result with δ = κ, which is not
desirable. Moreover, as shown in section 1.1, it is necessary that ε < α

2 ≤ κ for any
separable NMF algorithm to be able to extract approximately the columns of W .

Theorem 3.1. For any 0 ≤ ε < α
2 , it is necessary that δ ≥ (

3 ε
α + 3

2ε
)
for

Proposition 2 to hold.

Proof. Let us consider M̃ = M +N = WH +N , where

W =

⎛
⎜⎝ 1 0 1

2 − α
4

0 1 1
2 − α

4

0 0 α
2

⎞
⎟⎠ , H =

⎛
⎝ 1 0 0 1− λ 0

0 1 0 0 1− λ
0 0 1 λ λ

⎞
⎠ ,

and N =

⎛
⎜⎝ 0 0 ε

4 0 0

0 0 ε
4 0 0

0 0 − ε
2 0 0

⎞
⎟⎠ ,

where W is α-robustly simplicial (and α
2 -robustly conical) and where λ is such that

the middle point between M(:, 4) and M(:, 5) is
(
M̃(:, 3) + 2N(:, 3)

)
, that is,

M̃(:, 3) + 2N(:, 3) =

⎛
⎜⎝

1
2 − α

4 + 3ε
4

1
2 − α

4 + 3ε
4

α
2 − 3ε

2

⎞
⎟⎠ =

⎛
⎜⎝

1
2 − λα

4
1
2 − λα

4
λα
2

⎞
⎟⎠ =

1

2
(M(:, 4) +M(:, 5)),
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which requires λ = 1− 3 ε
α ≥ 0. Let p = (−K,−K,K2,−1, 0)T for any K sufficiently

large. It can be checked that

X =

⎛
⎜⎜⎜⎜⎝

1 0 0 μ 0
0 1 0 0 μ
0 0 0 0 0
0 0 0.5 0.5 0.5− μ
0 0 0.5 0.5− μ 0.5

⎞
⎟⎟⎟⎟⎠ , where μ =

1− λ

2− λ
,

is a feasible solution of (1.2). By Lemma B.1, there exists K sufficiently large such
that X∗(3, 3) = 0 for any optimal solution X∗. Using Lemma B.1 again we have
X∗(1, 1) = X∗(2, 2) = 1 for any optimal solution X∗ for K sufficiently large. Hence,
for K sufficiently large, the third column of M will not be extracted and the fourth
or fifth will be, hence,

||W̃ −W ||1 = ||W̃ (:, 3)−W (:, 3)||1 = ||M(:, 4)−W (:, 3)||1 = ||M(:, 5)−W (:, 3)||1
= ||(1 − λ)W (:, 1)− (1− λ)W (:, 3)||1
= 3

ε

α
‖W (:, 1)−W (:, 3)‖1

= 3
ε

α

(
1 +

α

2

)
= 3

ε

α
+

3

2
ε.

Using the same construction3 as in Theorem 3.1 but taking λ = 1− ε
α , we have

M̃(:, 3) = W (:, 3) +N(:, 3) =
1

2
(M(:, 4) +M(:, 5)) ,

for which ||W̃ (:, P ) −W ||1 ≥ ε
α + ε

2 for any permutation P , where W̃ is the matrix

extracted by Hottopixx. We notice that the corresponding matrix M̃ can also be
obtained from a 4-separable matrix M4 = W4H4, where

W4 =
(
M(:, [1 2]

)
M(:, 4)− v M(:, 5)− v), H4 =

⎛
⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 0.5 1 0
0 0 0.5 0 1

⎞
⎟⎟⎠ ,

v = (ε/4, ε/4,−ε/2)T , and

N4 =
(
03×2 v v v

)
,

and we have M̃ = WH + N = W4H4 + N4 = M̃4. Therefore, no algorithm to
which only the noisy separable matrix M̃ and the noise level ε are given as input can
approximately extract the columns of W among the columns of M with error smaller
than O ( ε

α

)
. In fact, the matrix M̃ above has two solutions to the noisy separable

NMF problem and there is no way to discriminate between them (the original matrix
could be 3- or 4- separable):

• If the algorithm returns a matrix W̃ with three columns, then if the original
matrix was M4 we have max1≤j≤4 min1≤k≤3 ||W4(:, j)− W̃ (:, k)||1 ≥ ε

α .

3A MATLAB code is available at https://sites.google.com/site/nicolasgillis/code and contains
this construction, along with the one of Theorem 3.1.
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• Similarly, if the algorithm returns a matrix W̃ with four columns, then
– if the third column is not extracted and the original matrix was M , we

have

max
1≤j≤3

min
1≤k≤4

||W (:, j)− W̃ (:, k)||1 ≥ ε

α
, while

– if the third column is extracted and the original matrix was M4, we have

max
1≤j≤4

min
1≤k≤4

||W4(:, j)− W̃ (:, k)||1 ≥ ε

α
.

The reason is that the distance between each pair of columns of M is at least ε
α .

Note that the algorithm of Arora et al. [1] achieves this optimal error bound
O ( ε

α

)
; see Theorem 3.7. However, it requires the parameter α as an input so that

the construction above does not prove their algorithm is optimal up to some constant
multiplicative factor. In fact, for the 3-separable matrixM , W is α-robustly simplicial,
while for the 4-separable matrix M4, W4 is α′-robustly simplicial with α′ ≤ 2 ε

α =
||W4(:, 3)−W4(:, 4)||1. It is possible to adjust the construction so that W and W4

have the same condition number, proving that the algorithm of Arora et al. [1] is
optimal. It suffices to add a row and a column to the input matrices as follows:

M ′ =
(
M

(
1− α

ε

)
We

0 1− α
ε

)
, and M ′

4 =

(
M4

(
1− α

ε

)
W4e

0 1− α
ε

)
(and updating W,W4, H , and H4 accordingly), where M ′ is 4-separable with condi-
tioning ε

α , while M ′
4 is 5-separable with the same conditioning.

3.2. Cluster identification. We now prove that there is a cluster of columns of
M̃ around each column of W for which the sum of the corresponding diagonal entries
of any feasible solution X of (1.2) is large. More formally, defining the clusters around
the columns of W as

(3.1) Ωρ
k =

{
j
∣∣∣ ||M̃(:, j)−W (:, k)||1 ≤ ρ

}
, 1 ≤ k ≤ r,

we are going to prove that ck =
∑

j∈Ωρ
k
X(j, j) is large for any feasible solution X of

(1.2), given that ε is sufficiently small.
Lemma 3.2. Let W ∈ R

m×r
+ have its columns sum to one, and let h ∈ Δm. Then,

denoting k = argmax1≤i≤r h(i), we have

||h||∞ = h(k) ≥ 1− ρ

2
⇒ ||W (:, k)−Wh||1 ≤ ρ.

Proof. Let us denote denote R = {1, 2, . . . , r}\{k}, we have

||W (:, k)−Wh||1 = ||(1− h(k))W (:, k)−W (:,R)h(R)||1
≤ (1− h(k))||W (:, k)||1 + (||h||1 − hk)||W (:,R)||1
≤ 2(1− h(k)) ≤ ρ.

Lemma 3.3. Let M = WH be a normalized r-separable matrix where W is
κ-robustly conical with κ > 0. Let also M̃ = M +N , where ||N ||1 ≤ ε < 1, and let X
be a feasible solution of (1.2). Then, the total weight ck =

∑
j∈Ωρ

k
X(j, j) assigned to

the columns of M̃ in Ωρ
k defined in (3.1) satisfies

ck ≥ 1− 16ε

κρ(1− ε)
for all 1 ≤ k ≤ r.
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Proof. Let 1 ≤ k ≤ r and R = {1, 2, . . . , r}\{k}, and let us denote the indices
corresponding to the columns of M̃ not in Ωρ

k as

Ω̄ρ
k = {1, 2, . . . , n}\Ωρ

k.

Let also j be such that W (:, k) = M(:, j). By Lemma 3.2, maxj∈Ω̄ρ
k
||H(:, j)||∞ <

1 − ρ
2 = β. The rest of the proof is similar to that of Lemma 2.2. By Lemma 2.1,

||W (:, k)−WHX(:, j)||1 ≤ 4ε
1−ε and ||X(:, j)||1 ≤ 1 + 4ε

1−ε . We have

WHX(:, j) = W (:, k)H(k, :)X(:, j) +W (:,R)H(R, :)X(:, j)

= W (:, k)
(
H(k,Ωρ

k)X(Ωρ
k, j) +H(k, Ω̄ρ

k)X(Ω̄ρ
k, j)

)
+W (:,R)y,

where y = H(R, :)X(:, j) ≥ 0, and

η = H(k,Ωρ
k)X(Ωρ

k, j) +H(k, Ω̄ρ
i )X(Ω̄ρ

i , j)

≤ ||X(Ωρ
k, j)||1 + β(||X(:, j)||1 − ||X(Ωρ

k, j)||1) ≤ ck + β

(
1 +

4ε

1− ε
− ck

)
.

The first inequality follows from H(i, j) ≤ 1 for all i, j and ||H(k, Ω̄ρ
k)||∞ ≤ β and

the second from X(i, j) ≤ X(i, i) for all i, j (hence ck ≥ ||X(Ωρ
k, j)||1), and β ≤ 1.

Finally, (1− η)κ ≤ ||W (:, k)−WHX(:, j)||1 ≤ 4ε
1−ε , leading to ck =

∑
j∈Ωρ

k
X(j, j) ≥

1− 8ε
κ(1−β)(1−ε) = 1− 16ε

κρ(1−ε) .

If we can guarantee that ck > r
r+1 for all 1 ≤ k ≤ r, then the sum of the diagonal

entries of X corresponding to columns of M̃ not in any Ωρ
k will be smaller than r

r+1 .
Therefore, if instead of picking the r largest diagonal entries of X , we cluster the
diagonal entries of X depending on the distances between the corresponding columns
of M̃ , we should be able to identify the columns of W approximately; see Algorithm 3.

Lemma 3.4. Let mj ∈ R
m 1 ≤ j ≤ n, x ∈ R

n
+ be such that

∑n
j=1 x = r, and

ρ ≥ 0. Let also Ωk = {mj | ||mj − wk||1 ≤ ρ} for 1 ≤ k ≤ r, where wk ∈ R
m

1 ≤ k ≤ r. Suppose
• ∑j∈Ωk

xj >
r

r+1 ,• ω = mini�=j ||wi − wj ||1 > 6ρ, and
• For all 1 ≤ k ≤ r, there exists 1 ≤ j ≤ n such that ||mj − wk||1 ≤ ε ≤ ρ.

Algorithm 3. Extracting columns of a separable matrix by linear programming and
clustering.

Input: An r-separable matrix M̃ = WH +N with W κ-robustly conical, the noise
level ||N ||1 ≤ ε, and the factorization rank r.

Output: A matrix W̃ such that ||W̃ (:, P )−W ||1 is small for some permutation P .

1: Compute the optimal solution X of (1.2).
2: Initialize K = {k | X(k, k) > r

r+1} and ν = 2ε.

3: while |K| < r and ν ≤ 2||M̃ ||1 do
4: Compute K with Algorithm 4 using input mj = M̃(:, j) 1 ≤ j ≤ n, x = diag(X)

and ν;
5: ν ← 2ν;
6: end while
7: W̃ = M̃(:,K) ;
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Algorithm 4. Cluster extraction.
Input: A set of points mj 1 ≤ j ≤ n, a vector of weights x ∈ R

n
+ such that∑n

i=j x = r, and ν ≥ 0.
Output: A index set K of centroids corresponding to clusters with weight strictly

larger than r
r+1 .

1: D(i, j) = ||mi −mj ||1 for 1 ≤ i, j ≤ n.
2: Si = {j | D(i, j) ≤ ν} for 1 ≤ i ≤ n;
3: w(i) =

∑
j∈Si

x(j) for 1 ≤ i ≤ n;
4: K = ∅;
5: while max1≤i≤n w(i) > r

r+1 do
6: k = argmaxw(i);
7: K ← K ∪ {k};
8: For all j ∈ Sk : w(j)← 0;
9: For all i /∈ Sk and j ∈ Sk such that j ∈ Si : w(i)← w(i)− x(j);

10: end while

Then, for any (ρ + ε) ≤ ν ≤ 2(ρ + ε), Algorithm 4 identifies a set K with r indices
such that

(3.2) max
1≤k≤r

min
j∈K
||mj − wk||1 ≤ 3ρ+ 2ε.

Moreover, if Algorithm 4 identifies a set K with r indices for some ν < ρ+ ε, then K
satisfies (3.2).

Proof. First notice that the index set K extracted by Algorithm 4 cannot contain
more than r indices. In fact, Algorithm 4 only identifies clusters with weight strictly
larger than r

r+1 , while the total weight
∑n

i=1 x is equal to r. It remains to show that
K contains at least r indices and satisfies (3.2).

First consider the case (ρ + ε) ≤ ν ≤ 2(ρ + ε). Let Si 1 ≤ i ≤ n be the sets
computed by Algorithm 4 before entering the while loop. We observe the following:

• For mj ∈ Ωk and mj′ ∈ Ωk′ , where j �= j′ and k �= k′, we have mj /∈ Sj′ and
mj′ /∈ Sj . In fact,

||mj −mj′ ||1 = ||(mi −wk) + (wk −wk′ ) + (wk′ −mj′)||1 ≥ ω− 2ρ > 4ρ ≥ ν.

• For all 1 ≤ k ≤ r, there existsmj ∈ Ωk such that w(j) > r
r+1 . By assumption,

for all 1 ≤ k ≤ r, there exists mj ∈ Ωk such that ||mj − wk||1 ≤ ε, hence for
all mi ∈ Ωk we have ||mj −mi||1 = ||(mj − wk) + (wk −mi)||1 ≤ ρ+ ε ≤ ν,
while

∑
i∈Ωk

x(i) > r
r+1 .• If mi /∈ ∪1≤k≤rΩk and w(i) > r

r+1 , then ||mi − wk||1 ≤ 3ρ + 2ε for some
1 ≤ k ≤ r. Suppose ||mi−wk||1 > 3ρ+2ε for all k; then for allmj ∈ ∪1≤k≤rΩk

||mi −mj ||1 ≥ ||(mi − wk) + (wk −mj)||1 > 3ρ+ 2ε− ρ ≥ ν.

Therefore,
∑

j∈Si
x(j) ≤ r−∑k

∑
j∈Ωk

xi < r−r r
r+1 < r

r+1 , a contradiction.
Let then k be such that ||mi −wk||1 ≤ 3ρ+ 2ε. This implies that if mj ∈ Si,
then either mj ∈ Ωk, or mj /∈ ∪k′ �=kΩk′ . In fact, if mj ∈ Ωk′ for some k′ �= k,
then

||mi −mj ||1 ≥ ||(mi − wk) + (wk − wk′) + (wk′ −mj)||1
≥ ω − 3ρ− 2ε− ρ > 2ρ− 2ε ≥ ν,

a contradiction.



ROBUSTNESS OF HOTTOPIXX, AN LP MODEL FOR NMF 1203

These observations imply that there are at least r disjoint sets Si with weight larger
than r

r+1 , each corresponding to a different cluster Ωk. Therefore, Algorithm 4 will
identify them individually and (3.2) will be satisfied.

For the case ν < ρ + ε, the result follows directly from the observations above:
any point mi with w(i) > r

r+1 must satisfy ||mi−wk||1 ≤ 3ρ+2ε for some 1 ≤ k ≤ r.
Moreover, for all k there must exist j ∈ K such that ||mj − wk||1 ≤ 3ρ + 2ε. In
fact, suppose there exists k such that ||mj − wk|| > 3ρ + 2ε for all j ∈ K. Then,
mi /∈ ∪j∈KSj for all i ∈ Ωk (see above) and hence∑

i∈Sj ,j∈K
x(i) < r − r

r + 1
= r

r

r + 1
,

which implies that K cannot contain more than r − 1 indices, a contradiction.
Theorem 3.5. Let M = WH be a normalized r-separable matrix with W

κ-robustly conical. Let also M̃ = M +N with ||N ||1 ≤ ε. If

(3.3) ε <
ωκ

99(r + 1)
,

where ω = mini�=j ||W (:, i)−W (:, j)||1, then Algorithm 3 will extract a matrix W̃ such
that

||W − W̃ (:, P )||1 ≤ δ = 49(r + 1)
ε

κ
+ 2ε for some permutation P .

Proof. Let X be a feasible solution of (1.2), let the r clusters Ωρ
k 1 ≤ k ≤ r be

defined as in (3.1), and let ck =
∑

j∈Ωρ
k
X(j, j). If ρ < ω

6 and ck > r
r+1 , then by

Lemma 3.4, Algorithm 4 will identify a set K with r indices such that

max
1≤k≤r

min
j∈K
||W (:, k)− M̃(:, j)||1 ≤ δ = 3ρ+ 2ε

for any ν ∈ [ρ+ ε, 2ρ+ 2ε]. Therefore, starting with ν = 2ε ≤ (ρ+ ε) and multiplying
it by two at each iteration will eventually give a value of ν in [ρ+ ε, 2ρ+ 2ε]. (Note
that Algorithm 4 could return a set K with r indices for ν smaller than ρ + ε; see
Lemma 3.4. Note also that the number of iterations performed by Algorithm 3 is at
most log2

(
ρ+ε
ε

)
.) If ε = 0, then ck = 1 for all 1 ≤ k ≤ r, while ρ = 0 < ω

6 , and the
loop is entered at most once. (If the entries of p are distinct, then it is not entered
because exactly r diagonal entries of an optimal solution of (1.2) will be equal to one,
each corresponding to a different column of W [3, Prop. 3.1].) Otherwise ε > 0 and
it remains to guarantee that ρ < ω

6 and ck > r
r+1 . By Lemma 3.3,

ε

1− ε
<

ρκ

16(r + 1)
⇒ ck >

r

r + 1
.

Taking ε < ωκ
99(r+1) and ρ = 98

6 (r + 1) ε
κ < ω

6 completes the proof since

ρ =
98

6
(r + 1)

ε

κ
> 16(r + 1)

ε

κ

(
1

1− ε

)
,

because 96
1−ε < 98 for any 0 ≤ ε < 1

49 .
It can be checked that all the results from section 2 apply to Algorithm 3. In

fact, by assumption, all the matrices considered did not contain duplicates or near
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duplicates of the columns of matrix W , in which case we showed that r diagonal
entries of X have weight at least r

r+1 . This implies that Algorithm 3 will not enter
the while loop; hence it is equivalent to Algorithm 1. In particular, Corollary 2.5 also
applies to Algorithm 3, that is, it is necessary that

ε <
κ

r − 1
for any δ <

κ

2
.

This shows that the bound of Theorem 3.5 for ε is tight up to a factor ω (and some
constant multiplicative factor). Moreover, by Theorem 3.1, the bound for δ is tight
up to a factor r (and some constant multiplicative factor).

Remark 4 (computational cost). The main additional cost of Algorithm 3 com-
pared to Algorithm 1 is computing and storing the distance matrix D. This requires
O(mn2) floating point operations and O(n2) space in memory. This is negligible as
computing MX already requires O(mn2) operations, while storing X requires O(n2)
space in memory.

Remark 5 (choice of the vector p). Because of the postprocessing procedure in
Algorithm 3, it is not necessary for Theorem 3.5 to hold that the vector p has distinct
entries. However, it will still be useful in practice to impose this condition. In fact,
this will incite the weights to be concentrated in fewer diagonal entries of X so that
typically fewer loops will have to be performed to obtain a set K containing r indices.
In particular, in the exact case (that is, ε = 0) or in the case in which there is no
duplicate and near duplicate in the data set (see above), the loop will not be entered.

Remark 6 (more sophisticated postprocessing strategies). It is possible to design
better postprocessing procedures but we wanted here to keep the analysis simple. In
particular, if the input matrix M̃ does not satisfy the conditions of Theorem 3.5, it
may happen that no set K computed in the loop of Algorithm 3 contains r elements.
Therefore, one should keep in memory the largest set extracted so far or design more
sophisticated strategies. For example, if fewer than r clusters have been extracted,
the condition that the weight of each extracted cluster must larger than r

r+1 can
be relaxed; this variant has been implemented in the MATLAB code available at
https://sites.google.com/site/nicolasgillis/code.

Remark 7 (preprocessing). Another possible way to deal with duplicates and near
duplicates would be to use an appropriate preprocessing. In [5], k-means is used to
reduce the number of data points and get rid of the duplicates. In fact, their algorithm
cannot deal with duplicates, even in the noiseless case. (Note that their robustness
result is only asymptotical, that is, it holds only when the noise level ε goes to zero.)
Arora et al. [1] also use some preprocessing in their algorithm (before processing any
data point, its neighbors have to be discarded). However, it seems difficult to combine
a robustness analysis with a preprocessing strategy (in fact, Arora et al. [1] need the
conditioning α as an input to do so); this is a topic for further research.

3.3. Repartition of the weights inside a cluster. In this section, we show
that Hottopixx (Algorithm 1) cannot provide better bounds than Algorithm 3. The
reason is the following: inside a cluster Ωρ

k, there is no guarantee that all the weight
will be assigned to a single diagonal entry of X . In the proof of Theorem 3.6, we show
that the weight may be equally distributed inside a cluster. This construction allows
us to show that ε ≤ κ

(r−1)2 is necessary for Proportion 2 to hold for any δ < κ + ε,

which proves our claim.
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Theorem 3.6. For any r ≥ 3 and δ < κ+ ε, it is necessary for Proposition 2 to
hold that

ε ≤ κ

(r − 1)2
.

Proof. See Appendix C.
Remark 8. It remains an open question whether there exists a bound on the noise

level to guarantee Hottopixx to be robust for any separable matrix, that is, one that
also contains duplicates and near duplicates. (Note that by Theorem 3.6, this bound,
if it exists, has to be smaller than κ

(r−1)2 .)

3.4. Comparison with the algorithm of Arora et al. [1]. In this section,
we compare the theoretical bounds for Algorithm 3 obtained in Theorem 3.5 with the
ones of the algorithm of Arora et al. for which the following holds.

Theorem 3.7 (see [1], Thm. 5.7). Let M = WH be a normalized r-separable
matrix with W α-robustly simplicial. Let also M̃ = M +N with ||N ||1 ≤ ε. If

(3.4) ε <
α2

20 + 13α
,

then the algorithm proposed by Arora et al. [1] extracts a matrix W̃ such that

||W − W̃ (:, P )||1 ≤ 10
ε

α
+ 6ε for some permutation P .

There are two bounds to compare. First, there is the bound on noise level ε
allowed to have any error guarantee. The one from (3.4) does not dominate the one
from Theorem 3.5; see (3.3). In fact, α and κ differ by only a factor of at most two
(Theorem 1.3), while ω (≥ κ ≥ α

2 ) can potentially be arbitrarily larger than α (take,
for example, the columns of W as the vertices of a flat triangle). Hence, for some
highly ill-conditioned matrices, Algorithm 3 can tolerate much higher noise levels.

Second, there is the bound on the error: the algorithm of Arora et al. dominates
the one of Algorithm 3, but only up to a factor r (which is usually small in practice).
This is not very surprising since the algorithm of Arora et al. is optimal in terms of
the error bound; see section 3.1. However, the algorithm of Arora et al. requires the
parameter α as an input, which, we believe, is highly impractical. At least, we do not
know of an efficient way to compute α (and this issue is not discussed in their paper).
Moreover, it was observed in [3] that Hottopixx performs better than the algorithm
of Arora et al. on some synthetic data sets.

To conclude, Algorithm 3 is, to the best of our knowledge, the provably most
robust algorithm for separable NMF for which the condition number α is not required
as an input.

4. Numerical experiments. In this section, we present some numerical exper-
iments to show the superiority of Algorithm 3 over Hottopixx in the case in which
there are duplicates and near duplicates of the columns of W in the data set; oth-
erwise both algorithms coincide since the postprocessing will not be entered (cf. the
discussion after Theorem 3.5).

All experiments were run on a two-core machine with 2.99 GHz and 2 GB of
RAM using a CPLEX implementation to solve the LP (1.2); the code is available at
https://sites.google.com/site/nicolasgillis/code and was developed in [6]. The con-
structions of Theorems 3.6 and the postprocessing procedure (Algorithm 3) can be
found on the same web page.
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We use the constructions from the proof of Theorem 3.6 with the parameters
κ = 0.1 and K = 5, while we vary the value of the rank r and the noise level ε.
Moreover, we duplicate each column of W twice (that is, each column of W is present
three times in the data set) and permute the columns of M̃ at random in order to
avoid a bias toward the natural ordering. Finally, we slightly perturb the vector p in
the objective function to make its entries distinct (since we also duplicated the entries
of p) by adding to each entry a value drawn from the normal distribution with mean
zero and standard deviation 0.1.

Figure 4.1 displays the percentage of columns of W correctly extracted by the two
algorithms for different values of the rank r and of the noise level ε (hence the higher
the curve, the better). As shown in Theorem 3.6, Hottopixx cannot extract one of
the columns of W , even for small noise levels. More interestingly, Algorithm 3 clearly
outperforms Hottopixx for larger noise levels. For example, for r = 40 and ε = 0.046
(see the plot in the bottom right corner of Figure 4.1), Hottopixx identifies only 35%
of the 40 columns of W , while Algorithm 3 identifies 95% of them. The reason for this
behavior is the following: when the noise is large, the set of feasible solutions of (1.2) is
typically larger (because the constraint ||M−MX ||1 ≤ 2ε is relaxed). For ε sufficiently
large, this allows all duplicates of some columns of W corresponding to small entries
of p to be given a large weight, and hence some columns of W are extracted more
than once. This is not possible with the postprocessing which clusters these entries
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Fig. 4.1. Comparison of Hottopixx and Algorithm 3 on the near-separable matrices from
Theorem 3.6 with duplicates of the columns of W . From left to right, top to bottom: r = 10, 20, 30, 40.
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together and is then able to extract other columns of W whose corresponding diagonal
entries of X are smaller.

Note that the computational time of the postprocessing strategy is negligible and
takes in average about 5% percent of the total time needed to solve the LP (1.2).

5. Conclusion and further work. In this paper, we have proposed a prov-
ably more robust variant of Hottopixx based on an appropriate postprocessing of the
solution of the linear program (1.2) (see Algorithm 3). In particular, we proved that
Algorithm 3 is robust for any input separable matrix M (Theorem 3.5), while our
analysis is close to being tight.

It would be interesting to improve the bound of Theorem 3.5 or show that the
bound is tight. It would also be particularly interesting to design more robust or
computationally more effective (or both?) separable NMF algorithms. In particular,
the following question seems to be open: does there exist a polynomial-time algorithm
to which only the noisy separable matrix M̃ and the noise level ε are given as input
and that achieves an error of order O( ε

α )? Such an algorithm would be optimal (see
section 3.1). Note that the algorithm of Arora et al. [1] achieves this bound but
requires the parameter α as an input, which is highly impractical; see section 3.4.

Appendix A. Proof of Theorem 1.3.
Proof of Theorem 1.3. Let

k = argmin1≤j≤r min
x∈R

r−1
+

||W (:, j)−W (:,J )x||1, where J = {1, 2, . . . , r}\{j},

w = W (:, k), and y= W (:,R)x∗, where

x∗ = argminx∈R
r−1
+
||W (:, k)−W (:,R)x||1, where R = {1, 2, . . . , r}\{k},

so that by definition, ||y−w||1 = κ. If y = 0, we are done since κ = ||w||1 = 1 ≥ 1
2α as

α ≤ 2. Otherwise y �= 0 and we define z = y
||y||1 = λ−1y. By definition, ||w− z||1 ≥ α

since z belongs to the convex hull of the columns of W . We have

α ≤ ||w − z||1 = ||w − (λ+ 1− λ)z||1 ≤ ||w − λz||1 + (1− λ)||z||1 = κ+ (1− λ) ≤ 2κ

since κ = ||w − λz||1 ≥ ||w||1 − ||λz||1 = 1− λ, and the proof is complete.

Appendix B. Proof of Theorem 2.4. The following lemma shows that if one
of the coefficients in the objective function of a linear program is much larger than all
the other ones, then the corresponding entry of any optimal solution must be smaller
than the corresponding entry of any feasible solution. Although the result is clear
intuitively, we provide here a simple proof.

Lemma B.1. Consider the linear program

(B.1) min
x∈Rn

cTKx such that Ax = b and l ≤ x ≤ u

with l, u ∈ R
n, l ≤ u, and cK = (K, c̃) ∈ R

n, where K ∈ R is a parameter. Let
us denote x∗

K an optimal solution of (B.1) depending on K. Assume there exists a
feasible solution xf of (B.1) such that xf (1) = s. Then, for any K sufficiently large,
x∗
K(1) ≤ s.

Similarly, if cK(1) = −K and there exists a feasible solution such that x(1) = t,
then for any K sufficiently large, x∗

K(1) ≥ t.
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Proof. Let V �= ∅ be the set of vertices of the feasible set of (B.1) and V̄ = {x ∈
V | x(1) > s}. Notice that because the feasible set of (B.1) is a polytope, there always
exists an optimal solution in V . Let us denote d = minx∈V̄ x(1) > s. Assume there
exists an optimal solution x∗

K such that x∗
K(1) > s. This implies that there exists

an optimal solution x̄∗
K ∈ V̄ (since any optimal solution is a convex combination of

optimal vertices in V). Therefore,
Kd− ||c̃||2||u||2 ≤ cTKx∗

K = cTK x̄∗
K = Kx̄∗

K(1) + c̃T x̄∗
K(2:n) ≤ cTKxf ≤ Ks+ ||c̃||2||u||2,

which is absurd for any K > 2||c̃||2||u||2
d−s .

The linear program (1.2) can be written in the form of (B.1); in fact, 0 ≤ X ≤ 1,
while the mn additional variables necessary to express the constraint ||M −MX ||1 ≤
2ε linearly will be in the interval [0, 2ε]. Therefore, Lemma B.1 applies to (1.2).

Proof of Theorem 2.4. We prove the result with the following construction: Let

W =

(
κ
2 Ir

(1− κ
2 )e

T

)
,

which is κ-robustly conical. Let also

H =
(

Ir βIr + (Er − Ir)
1−β
r−1

)
,

so that maxi,j H
′
ij = β (note that β must be larger than 1

r since the columns ofH ′ sum
to one), N = 0, M̃ = WH+N , p = (1, 2, 3, . . . , r−1,−K,−1,−2, . . . ,−(r−1),−K2)T

for K sufficiently large, and

ε =
κ(1− β)

(r − 1)(1− β) + 1
≤ κ

r − 1
.

Assume that

X =

⎛
⎜⎜⎜⎜⎝

(1− δ)Ir−1 +
δ−ω
r−1 Jr−1 0 (1 − δ)

(
βIr−1 +

1
r−1Jr−1

(
1−ω
1−δ − β

))
0

δ−ω
r−1 e

T 1 1−δ
r−1

(
1−ω
1−δ − β

)
eT 0

ωIr−1 0 ωIr−1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎠ ,

where Jr−1 = Er−1 − Ir−1,

δ = (2 − β)ω and ω =
ε

κ(1− β)
, implying X(n, n) = ω + (r − 1)(δ − ω) = 1,

is a feasible solution of (1.2) (note that n = 2r). By Lemma B.1, there exists K
sufficiently large such that any optimal solution X∗ must satisfy X∗(n, n) = 1. Using
Lemma B.1 again, there exists K sufficiently large such that X∗(r, r) = 1. Therefore,
for K sufficiently large, the rth and nth columns of M̃ will be extracted, implying

||W − W̃ (:, P )||1 = min
1≤j≤r−1

||W (:, j)−M(:, n)||1

= ||W (:, 1)−M(:, n)||1 = κ
r − 2 + β

r − 1
>

r − 2

r − 1
κ ≥ ε,

and the proof will be complete.
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It remains to show that X is feasible: Clearly, tr(X) = r. For the constraints
0 ≤ X ≤ 1, we check that

0 ≤ ω =
ε

κ(1− β)
=

1

r(1 − β) + 1
≤ δ = (2− β)ω =

(1− β) + 1

r(1 − β) + 1
≤ 1,

and

0 ≤ 1

r − 1

(
1− ω

1− δ
− β

)
≤ 1 since

1− ω

1− δ
=

r − 1

r − 2
≥ 1.

For X(i, j) ≤ X(i, i) for all i, j, we only have to check that

1− δ ≥ δ − ω

r − 1
⇐⇒ (r − 1)(r − 2)(1− β) ≥ (1− β).

It remains to verify that ||M(:, j)−MX(:, j)||1 ≤ 2ε for all 1 ≤ j ≤ 2r:
• 1 ≤ j ≤ r − 1. Letting J = {1, 2, . . . , r}\{j}, we have

||M(:, j)−MX(:, j)||1 =

∥∥∥∥M(:, j)− (1 − δ)M(:, j)− δ − ω

r − 1
M(:, j + r)

∥∥∥∥
1

=

∥∥∥∥δM(:, j)− ωM(:, j + r) − δ − ω

r − 1
M(:,J )e

∥∥∥∥
1

= ω ‖M(:, j)−M(:, j + r)‖1
+ (δ − ω)

∥∥∥∥M(:, j)− 1

r − 1
M(:,J )e

∥∥∥∥
1

= ωκ(1− β) + (δ − ω)κ = 2ωκ(1− β) = 2ε.

• r + 1 ≤ j ≤ 2r − 1. Letting R = {1, 2, . . . , r}\{j − r} and wj = W (:,R) e
r−1 ,

we have

||M(:, j)−MX(:, j)||1
= ‖M(:, j)− ωM(:, j)− (1− δ)βW (:, j − r) − (1− ω − β(1 − δ))wj‖1
= (1− ω)

∥∥∥∥M(:, j)− r − 2

r − 1
βM(:, j − r)−

(
1− β

r − 2

r − 1

)
wj

∥∥∥∥
1

= (1− ω)

∥∥∥∥M(:, j)−
(
1− 1

r − 1

)
βW (:, j − r)−

(
1− β + β

1

r − 1

)
wj

∥∥∥∥
1

=
β(1− ω)

r − 1
‖W (:, j − r) − wj‖1 =

β(1 − ω)κ

r − 1
≤ (1 − ω)κ

r

=
(r − 1)(1− β)κ

r((r − 1)(1− β) + 1)
≤ (1− β)κ

(r − 1)(1− β) + 1
= ε.

In fact, 1−δ
1−ω = r−2

r−1 , β ≤ 1
r , and, by construction, M(:, j) = βW (:, j − r) +

(1− β)wj .

Appendix C. Proof of Theorem 3.6.
Proof of Theorem 3.6. We prove the result with the following construction: Let

W =

⎛
⎝ κ

2 Ir
(1− κ

2 )e
T

0r×r

⎞
⎠ , H =

(
Ir−1 0 λIr−1

1
r−1e

0 1 (1− λ)eT 0

)
,
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where λ = 2 ε
κ ,

N =

⎛
⎝ 0(r+1)×r 0(r+1)×1 0(r+1)×(r−1) 0(r+1)×1

εeT 0 01×(r−1) ε
0(r−1)×(r−1) 0(r−1)×1 Z 0(r−1)×1

⎞
⎠ ,

where Z = xIr−1 + y(Er−1 − Ir−1) with x = 1
r−1ε and y = −x

r−2 . The matrix Z
has been constructed so that ||Z(:, j)||1 ≤ ε for all j,

∑
j Z(i, j) = 0 for all i, and

‖M̃(:, j)− 1
r−1M̃(:, I)e‖1 = 2ε for all j ∈ J = {r+1, r+2, . . . 2r−1} and I = J \{i}.

Let also M̃ = WH +N ,

κ

(r − 1)2
< ε ≤ κ

2(r − 1)
so that λ ≤ 1

r − 1
,

and

p = (1, 2, . . . , r − 1,K3,K2,K2 + 1, . . . ,K2 + r − 1,−K)T

for K sufficiently large. Assume

X =

⎛
⎜⎜⎜⎝

(1− 2ε
κ )Ir−1 0 λ r−2

r−1Ir−1

(
1− 2ε(r−1)

κ

)
eT

0 0 0 0
0 1

r−1e
1

r−1Er−1 0
2ε
κ eT 0 0 (r − 1)2εκ

⎞
⎟⎟⎟⎠

is feasible for (1.2). Letting X∗ be any optimal solution, by Lemma B.1 there exists K
sufficiently large such that X∗(r, r) = 0. By Lemma C.1 (see below), this implies that
X∗(j, j) ≥ 1

r−1 for j ∈ J . Using Lemma B.1 again, we have that for K sufficiently

large X∗(j, j) = 1
r−1 for all for j ∈ J , and X∗(n, n) ≥ (r − 1)2εκ . Therefore, since

2ε(r − 1)

κ
>

1

r − 1
⇐⇒ ε >

κ

2(r − 1)2

and

1− 2ε

κ
>

1

r − 1
⇐⇒ ε <

(
r − 2

r − 1

)
κ

2
≤ κ

4
,

the first r − 1 columns and the last column of M̃ will be extracted so that

||W − W̃ ||1 = ||W (:, r) − M̃(:, n)||1 = κ+ ε,

and the proof will be complete.
It remains to show that X is feasible. We clearly have tr(X) = r, 0 ≤ X ≤ 1, and

X(i, j) ≤ X(i, i) for all i, j because ε ≤ κ
2(r−1) , while for ||M̃(:, j) − M̃X(:, j)||1 ≤ 2ε

for all j, we have the following:
• 1 ≤ j ≤ r − 1,

||M̃(:, j)− M̃X(:, j)||1 =
2ε

κ
||M̃(:, j)− M̃(:, n)||1 = 2

r − 2

r − 1
ε ≤ 2ε.

• j = r. This follows from Lemma C.1.
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• r + 1 ≤ j ≤ 2r − 1. This follows from the construction of matrix Z.
• j = 2r. M̃(:, j) = M̃X(:, j) since M̃(:, j) = 1

r−1W (:, 1:r − 1)e.

Lemma C.1. Let W,H,N and M̃ = WH + N be the matrices constructed in
Theorem 3.6. Let also R = {1, 2, . . . , n}\{r}. Then

(C.1) min
x≥0
||M̃(:, r) − M̃(:,R)x||1 = 2ε,

and the unique optimal solution of (C.1) is given by

x† =

⎛
⎜⎝ 0(r−1)×1

1
r−1e

01×1

⎞
⎟⎠ ∈ R

2r−1.

Proof. Let x∗ = (y, z, w) be an optimal solution of (C.1), where y, z ∈ R
r−1
+ and

w ∈ R+. We have to show that x∗ = x†. From x∗, let us construct another optimal
solution x′ = (y′, z′, 0) such that all the entries of y′ and z′ are equal to each other.
Because M̃(:, n) = 1

r−1M̃(:, 1:r− 1)e, we take w = 0, replace z ← z+ w
r−1 , and obtain

an equivalent solution. Let us denote R̄ = R\{n} and

g(y, z) =

∥∥∥∥M̃(:, r) − M̃(:, R̄)
(
y

z

)∥∥∥∥
1

.

By symmetry, one can check that g(y, z) = g(y(P ), z(P )) for any permutation P of
{1, 2, . . . , r− 1}. (This simply amounts to permuting the first and last r− 1 columns
of M(:, R̄).) By convexity, (y′, z′) = 1

|Π|
∑

P∈Π(y(P ), z(P )), where Π is the set of all

possible permutations of {1, 2, . . . , r − 1}, is also an optimal solution of (C.1); hence
all entries of y′ and z′ are equal to each other, and ||y′||1 = ||y||1 and ||z′||1 = ||z||1.

Therefore, denoting y′(i) = a
r−1 and z′(i) = b

r−1 for all 1 ≤ i ≤ r − 1, the
optimization problem (C.1) can be reduced to

(C.2) min
a,b≥0

∥∥∥∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎜⎜⎜⎝

0(r−1)×1

κ
2

1− κ
2

0

0(r−1)×1

⎞
⎟⎟⎟⎟⎟⎟⎠− a

⎛
⎜⎜⎜⎜⎜⎜⎝

κ
2(r−1)e

0

1− κ
2

ε

0(r−1)×1

⎞
⎟⎟⎟⎟⎟⎟⎠− b

⎛
⎜⎜⎜⎜⎜⎜⎝

λκ
2(r−1)e

(1− λ)κ2
1− κ

2

0

0(r−1)×1

⎞
⎟⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥∥
1

≡ min
a,b≥0

h(a, b) =
κ

2
|a+ λb|+ κ

2
|1− (1− λ)b|+

(
1− κ

2

)
|1− a− b|+ ε |a| .

Let us show that (a∗, b∗) = (0, 1) is the unique optimal solution, for which h(0, 1) =
κλ = 2ε. First, note that (0, 0) cannot be optimal since h(0, 0) = 1. For a + b > 1,
the subdifferential of h in a is larger than 1 − ε > 0, while for 0 < a + b < 1, the
subdifferential of h in b is κλ− 1 = 2ε− 1 < 0 (recall that λ = 2ε

κ , ε ≤ κ
2(r−1) , κ ≤ 1,

and r ≥ 3); hence a∗ + b∗ = 1 at optimality. Substituting a = 1− b above, we obtain

b∗ = argmin0≤b≤1 2|1− (1− λ)b| = 1,

which is unique as the slope at b = 1 is negative (since 0 ≤ λ ≤ 1/2).
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Finally, we have b∗ = 1, a∗ = 0 is the unique solution of (C.2), implying that
y′ = y = 0 and that the minimal objective function value of (C.1) is 2ε. Moreover,
this implies ||z′||1 = ||z||1 = 1. It remains to show that the entries of z are equal to
each other, that is, show that the unique solution to the system∥∥∥∥∥∥

⎛
⎝ 0(r−1)×1

κ
2

0(r−1)×1

⎞
⎠−

⎛
⎝ λκ

2 Ir−1

(1 − λ)κ2
Z

⎞
⎠ z

∥∥∥∥∥∥
1

= 2ε

is z∗ = 1
r−1e, which is clearly the case as the only z such that Zz = 0 and ||z||1 = 1

is z∗. This completes the proof.
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